Worksheet for 2021-08-30

Conceptual questions

Question 1. Find a parametrization for the curve $y^2 = x^3$ that traces out the entire curve (not just part of it!).

Question 2. Let x = f(t), y = g(t) be a parametric curve such that g'(3) = 0. What can you conclude (if anything) about the tangent line at t = 3?

Question 3. True or false: for a parametric curve
$$x = f(t), y = g(t)$$
, we have $d^2y/dx^2 = \frac{d^2y/dt^2}{d^2x/dt^2}$.

Computations

Problem 1. Find a Cartesian equation for the parametric curve $x = t^3 + t$, $y = t^2 + 2$. Hint: compute x^2 .

Find the slope of this curve at the point (10,6). If you remember implicit differentiation, try using that on the Cartesian equation and check that you get the same answer.

Problem 2 (Stewart \$10.2.54). Compute the arclength of the "astroid" $x = \cos^3 t$, $y = \sin^3 t$ depicted in Figure 1. (Stewart \$10.2.34 asks you for the area.)

Problem 3. There are two points on the curve

$$x = 2t^2, y = t - t^2, -\infty < t < \infty$$

where the tangent line passes through the point (10, -2). Find these two points.

FIGURE 1. Problem 3